Test 3 Numerical Mathematics 2
 November, 2021

Duration: 6 quarters of an hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark of this test. Use of a calculator is allowed.

1. [1] Show that given an innerproduct (f, g) one can generate orthogonal polynomials $\phi_{n}(x)$ of degree n by a triple-recursion relation, when the two polynomials $\phi_{0}(x)$ and $\phi_{1}(x)$ are given.
2. Consider the function $f(x)$ on $[-1,1]$ given by

$$
f(x)= \begin{cases}1+x & \text { for } x \in[-1,0], \\ 1-x & \text { for } x \in[0,1] .\end{cases}
$$

(a) [1.5] Let $C_{n}(x)=\sum_{k=0}^{n} a_{k} T_{k}(x)$ be the Chebyshev expansion of $f(x)$. Give the formula for a_{k} and use this to show $a_{k}=0$ for k odd.
(b) [2.5] Compute a_{0} and a_{2}. For the latter you might need one of $\cos (3 \theta)=$ $4 \cos ^{3}(\theta)-3 \cos (\theta)$ or $\sin (3 \theta)=3 \sin (\theta)-4 \sin ^{3}(\theta)$.
3. Consider for arbitrary $f(x)$ the integral $\int_{0}^{\infty} w(x) f(x) d x$ with $w(x)=\exp (-2 x)$.
(a) [3] Derive that for this integral the Gauss rule using one interpolation point is simply $f(1 / 2) / 2$.
(b) [1] Determine the degree of exactness of the rule in the previous part.

